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Classical Axiomatics with Extension to 
Nonequilibrium Thermodynamics 1 

E. F. Lype 2 

An attempt is made to reorganize the axiomatics of classical thermodynamics as 
written by Carath6odory in 1909 and to extend it to nonequilibrium systems. 
The three thermodynamic laws are derived from axioms and the entropy 
appears as the constant of integration of the Pfaffian equation with a suitably 
chosen integrating factor. Transition to nonequilibrium systems is shown to 
require an extension of the phase space to include the gradients of temperature 
and velocity as additional coordinates. Accessible states then have to comply 
with a system of momentum equations and any departure from these restrictions 
leads to inaccessible states. 

KEY WORDS: classical axiomatics; entropy; nonequilibrium systems; ther- 
modynamics. 

1. I N T R O D U C T I O N  

An analysis of Carath6odory's study of the axiomatics of thermodynamics 
in the year 1909 [ 1 ] shows that there are many facets of thermodynamics 
which were not covered in that study. The present paper is an attempt to 
reorganize the axiomatics of classical thermodynamics and to extend it to 
nonequilibrium systems. From the three "axioms" which describe the 
physics of the thermodynamic process, we derive the three thermodynamic 
"laws." A classification of the latter leads to Carath6odory's concept of 
"inaccessible states," which is discussed in Section 5 and derived without 
introducing Carath6odory's Axiom 1. The corresponding Pfaffian differen- 
tial equation and its solutions are the subject of Sections 6 and 7; their 
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constraints on the possible constitutive equations are shown in Section 8, 
together with the only condition under which negative absolute tem- 
peratures may occur. This condition is due to a unique correlation between 
macroscopic axiomatics and Planck's characteristic function of statistical 
thermodynamics. The entropy is shown to appear as the constant of 
integration of the Pfaffian equation in Section 10, with a suitably chosen 
integrating factor. 

Transition to nonequilibrium systems requires a reexamination of the 
inaccessible states and is discussed in Section 11. These states have now 
become functions of the temperature and velocity gradients. Up to this 
point, we have constructed an "axiomatic formalism," i.e., a structure of 
rules which is independent of the particular substance about which we 
desire information. Such specific information can be obtained by consider- 
ing the "constitutive equations" of the bodies involved. However, con- 
stitutive equations are not part of this study. 

2. THE AXIOMS 

The axioms which govern the energy transfer in systems with non- 
uniform temperature are as follows. 

2.1. Axiom 1 

"Transient energy de/dt appears in the form of heat input dq/dt as well 
as work input dw/dt": 

d~ d q d w  
- ~ ( 1 )  

dt dt dt 

2.2 Axiom 2 

"The energy input required to bring a body from state C1 to state C2 
is independent of the nature of the energy chosen, and independent of the 
traversed intermediate states": 

[~]~ = U(C2, C,) (2) 

such that 

or, abbreviated, 

U(C2,  C1) = u(C2)  - u(Cl) (3) 

U ( C 2 ,  C l )  = b/2 - -  b/1 (4 )  
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From Eqs. (2) and (4) it follows for infinitesimal energy input that 

de du 
dt dt (5) 

and from Eqs. (5) and (1), we have 

du dq dw 
- 4 ( 6 )  

dt dt dt 

where u is "internal energy." Both heat input and work input consist of a 
reversible and an irreversible part. Therefore, we write in accordance with 
classical transport theory [2] 

dq= () +_K div(gra d O) (7) 
dt p 

and with W as the local velocity vector of the fluid motion, 

dw dxi 1 H: Grad W (8) 
d----~ -'~-~ - X i ----~ - p 

where Q = reversible heat exchange without temperature gradients, which 
may be given by its own constitutive equation and is independent of the 
thermodynamic properties; (~/p)div(gradO)=irreversible heat transfer 
due to a temperature gradient (~:---thermal conductivity, p = mass density, 
and O - empirical temperature); - X i ( d x ] d t )  = doJ/dt- reversible work 
input by conservative forces X~; and - ( l / p )  II: Grad W = irreversible 
momentum transfer due to a stress II  which causes displacement gradients 
in the subjected solid or a velocity gradient (denoted by Grad W) in the 
subjected fluid. 

When we define the reversible work in Eq. (8) as 

dx i de) 
- X i  dt - dt (9) 

and the irreversible work as 

1 I I : G r a d W  &b (10) 
p dt 

then we can state for the combined work input 

dw de) dO 
d---[ = d t  ~- dt (11) 

The last term is subjected to the following axiom. 
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2.3. Axiom 3 

"The nonequilibrium work can never be negative": 

Nonequilibrium work is absent in thermostatics. 

Lype 

(12) 

3. THE LAWS 

3.1. The Zeroth Law 

Equations (7), (8), and (9) show that "energy input into bodies subjec- 
ted to heat exchange can occur even when all deformation coordinates are 
kept constant." Therefore, not only does energy input act upon the defor- 
mation coordinates, xi, but there must exist an additional thermal coor- 
dinate, O, which measures how hot a body is. O is called the "empirical 
temperature." 

3.2. The First Law 

Equation (7) can be expressed as follows: "There exists a property of 
state, called 'internal energy,' whose increment during a transition from 
state C1 to state C2 is equal to the input of heat and work during that 
transition." 

3.3. The Second Law 

By applying the inequality Eq. (12) to Eq. (7), it follows that, for an 
adiabatic process where dq/dt = O, 

du de) 
~> (13) 

dt dt 

"The rate of change of internal energy in an adiabatic process can never be 
less than the simultaneous rate of input of equilibrium work." This 
inequality is the second law of thermodynamics. It is needed in ther- 
mostatics. 

4. CONSTITUTIVE EQUATIONS OF THERMOSTATICS 

The independent variables of simple systems are the empirical tem- 
perature, O, and deformation coordinates, x l . . . x ~ .  
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The constitutive equations of simple systems are n thermal equations 
of state, 

Xs = Xi(O, Xl.. .  x,) (14) 

and one caloric equation of state, 

u = ; 4 0 ,  x~ ... x , )  (15) 

The differential 

0u c3u 
du = ~ dO + ~ dxi (16) 

is exact on account of Axiom 2, which requires that ~ du is independent of 
the path. The equilibrium work is now given as 

d ~ =  - X , ( O ,  x 1 .. . x , )  dx, (17) 

The balance of internal energy for the system of Eqs. (16), (17), (7), and 
(10) becomes 

•u ~u ~: 1I 
~3~dO+-~x dX~= - X i d x ~ + - d i v ( g r a d O ) + - - : G r a d W + O .  (18) 

P P 

5. I N A C C E S S I B L E  S T A T E S  

From Eqs. (6) and (11), we obtain the energy balance 

du dq d~ 
-~ = ~7 +-~- + ~-~ t (19) 

Writing the balance Eq. (19) in the form 

dB 
- -  = 0 ( 2 0 )  
dt 

gives, according to Eqs. (6) and (11), 

dB du dco d~ dq 
dt - dt dt dt dt = 0 (21 ) 

By describing all derivatives in Eq. (21), we describe a distinct ther- 
modynamic path. All points whose coordinates coincide with Eq. (21) 
represent accessible states. All points whose coordinates are outside the 
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du dq doJ d~ 
x ~  = -~ + -97 + u 

Fig. 1. Characteristic p-v  diagram. 

1) 

prescribed curve are the "inaccessible states" as far as a chosen integral is 
concerned. Figure 1 shows that situation for a two-dimensional example: 
only points on the chosen curve are accessible points; all other points do 
not represent Eq. (21) and are inaccessible. 

It can be seen that fewer coordinates suffice to describe the inaccessible 
points than those which describe the region of accessibility. In 1909, 
Carath6odory proved that the energy balance equation, Eq. (21), can be 
integrated only for such cases where inaccessible states surround any 
arbitrary point P. The thermodynamic properties of such "systems with 
inaccessible states" are now examined. The principle named above is 
"Carath6odory's principle." 

The general energy balance Eq. (21), with dq/dt ~ O, d~/dt ~ O, has no 
inaccessible points. It can, therefore, not be integrated to yield a specific 
path in the diagram of the state properties. However, by introducing the 
limits dq/dt ~ O, and d~/dt ~ O, we obtain from Eq. (21) the energy balance 
of a reversible, adiabatic process: 

dB ) du do) 
lim = 0 (22) 

?7 = 

or, from Eqs. (16) and (17), 

- ~ d O +  +Xi dxi=O (23) 

This inexact Pfaffian differential equation no longer contains the time as a 
primitive variable. It interrelates those (n + 1) displacements dO, dxi in the 
(n + 1)-dimensional property space which result in a reversible adiabatic 
process. When Eq. (23) is integrable, i.e., when an integrating factor exists, 
then all permissible displacements originating in a point P'(O', x'l...x'n) 
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are located on an n-dimensional surface a' through the point P' in the 
(n + 1)-dimensional property space. 

We now examine the properties of the Pfaffian equation, regardless of 
its inaccessibility conditions. In that way, we obtain numerous, time- 
independent solutions of thermodynamic relations. 

6. THE INTEGRABILITY CONDITIONS 

According to the theory of the Pfaffian equations, Eq. (23) is 
integrable, if the following (n/2) integrability conditions are satisfied for 
unspecified constitutive Eqs. (14) and (15): 

O0\c3xk c3x,,]-~--~xk+ k)~-~+ -~xl+ X, --~-=0 (24) 
Not knowing the constitutive equations, the decision whether or not 
Eq. (24) is satisfied must be based on Carath6odory's principle: 

If a Pfaffian equation is given, and if it is known that in every region 
surrounding an arbitrary point P there are points which cannot be reached 
along curves satisfying that equation, then that equation must necessarily 
possess an integrating factor which converts it to an exact differential equation. 

The existence of such adiabatically inaccessible states in the immediate 
neighborhood of every point P is guaranteed by Eq. (21), which is obtained 
by a limiting process imposed on the general energy balance for processes 
with heat input. Therefore, Carath6odory's principle is satisfied, and 
Eq. (23) possesses an integrating factor. The simplest case (the elastic solid) 
has six simultaneous equations from Eq. (24) to solve. 

7. CONSTRAINTS ON THE CONSTITUTIVE EQUATIONS 

Even though unspecified, the constitutive equations are subjected to 
severe thermodynamic constraints. This is seen when Eq. (24) is written in 
the form 

Whichever pair k, l is chosen for X~, xk, and Xt, xt, the right-hand side 
must always be equal to the same function Ou/c?O = cv. This is possible only 
if the right-hand side has the indeterminate form 0/0. Therefore, 

~Xt OXk 
- -  - - -  ( 2 6 )  
Oxk Oxl 

840/9/6-9 
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and 
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+ 

According to Eq. (27), each ratio must be equal to a common function T, 

8u X ' ] /SX ,  r(O, x t . . . x , ,  ) (28) 
-S-2, + ) t o o  = 

Therefore, the thermal and caloric equations are coupled, according to 
Eq. (28), by the relation 

8u _ T 8Xi 
Ox, ~ - X, (29) 

In order to find the function T(O, xl ... x,,), we have to introduce Planck's 
"characteristic function," ~. 

8. THE CHARACTERISTIC F U N C T I O N  

We now calculate the value of the function (U/OYa~ v along a reversible 
adiabatic surface through a given initial point P. For independent variables 
O and xi we obtain from Eq. (23) 

- ~  O + --6 dx, = O 

The "characteristic function," ~(O, xi) is defined as 

u 
&9 =-~5 dO + ~-~ dx, 

such that 

Then 

80 0 2 

86 Xi 
8xi 0 

(30) 

(31) 

(32) 

(33) 

(34) 
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where Eq. (34) represents the change of u/O on a surface of reversible 
adiabatic process in a [0, x~, (u/O ) ] diagram. 

The importance of the function ~b(O, x~) lies in the fact that it can be 
calculated from statistical mechanics as the logarithm of the partition 
function, Z. For any physically defined substance, ~b is always a known 
function of O and xi. 

In order to evaluate the function T in Eq. (28), we obtain from Eqs. 
(32) and (33) 

T(O'x1""Xn)=[O2~@i(631P ) ' ~  ~?07/[-00 O ~3 ( 0 0 ) ] 0 0  ~ (35) 

For nearly all substances, if(O, x~) is a continuous function such that 

ox-Z N = N  (36) 

In that case, Eq. (35) yields 

T(O, xl ... xn)=O (37) 

and if O is defined as positive, T is always positive. 
By convention, O is that extrapolated temperature which is propor- 

tional to the pressure ratio observed when an ideal gas is heated in a 
constant-volume vessel, such that its pressure rises from Po to p, while Po is 
asymptotically lowered toward zero in successive experiments: 

O=273'161im ( p ) p 0 ~ o  (38) 

Since p can never be negative, O as defined by Eq. (38) is always positive; 
thus, there exists an absolute zero of empirical temperature. 

However, there exists an extensively discussed case where ~(O, xi) is 
not continuous and where the temperature jumps from + oe to - oo. In the 
neighborhood of such points, Eq. (37) is not valid, and negative tem- 
peratures do occur. 

9. THE INTEGRATING FACTOR 

Multiplying Eq. (23) by the dimensionless integrating factor 
M(O, Xl "'" xn) yields 

M(O, xl...xn)-ff-odO+M(O, xl. . .xn) -~x+Xi dxi=0 (39) 



1026 Lype 

Since this is now an exact differential, the exactness conditions must be 
satisfied, i.e., the mixed second-order derivatives must be equal. Due to 
Eq. (24), this yields for every pair i = k, i= l, the (~) exactness conditions 

~xk -~xt + XI = ~xl \Oxk + Xk (40) 

and for every i, the n additional exactness conditions 

c3 / ~ u \  
~ - x ; ~ M - ~ ) = S [ M ( ~ + X i ) }  (41) 

After canceling out the identical mixed second-order derivatives, Eq. ( 4 1 )  

yields 

gO 

The substitution of Eq. (23) yields n simultaneous differential equations for 
M: 

~M 
- ~  = ( ~ x / )  o --c30 (42) 

Since a relation between ~u/OO and a single ~Xi/QO cannot exist [see 
Eq. (25)], each side of Eq. (42) must be zero. Therefore, it follows that 

OM 
- -  = 0 ( 4 3 )  
0xi 

and the differential equation for the integrating factor becomes 

dM 
O ~ + M = 0 (44) 

According to Eq. (44), M depends on the temperature alone. Therefore, M 
cannot depend on any constitutive equation, i.e., M is a "universal 
function." Integration of Eq. (44) yields the dimensionless integrating factor 

r dO ~ t  
M--e  J~' -ff = - -  (45) 

6) 

This function Mr, with the derivatives Eq. (43), simultaneously satisfies the 
set of exactness conditions Eq. (40). 
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When O = O', we have M - - 1 ,  i.e., no integrating factor is needed. 
That is the case when all deformation coordinates in Eq. (23) are fixed. 
Thus, O' is the empirical temperature of a system which is subjected to heat 
exchange only. 

10. THE THERMOSTATIC ENTROPY 

Substituting in Eq. (39) the integrating factor [by means of Eq. (45) 
and canceling out the constant O']  yields the area element of the adiabatic 
a surface 

{ l I ~ o d O + ( ~ i x i + X i )  dxil} =O (46) 

or by virtue of Eqs. (28) and (38), 

c~Xi 7 

Only displacements dO, dx~ which satisfy Eq. (47) are confined to an 
adiabatic surface. The indefinite integral of Eq. (47) is the equation of that 
surface: 

+-~-~ dx,J~ = s(a) (48) 

where s is the constant of integration, called the "thermostatic entropy." 
Since such a a surface can be constructed through any point in the 
property space where the constitutive Eqs. (14) and (15) are valid, the 
constant of integration, s, is a continuous function with continuous first- 
order derivatives. Therefore, Eq. (48) can be differentiated; this yields 

Cv OXi ds = -~ dO + -~--~ dxi (49) 

and hence 

x, = ~ ;  o, xj- i C j  (50) 

Substituting Eqs. (16), (28), and (40) into Eq. (49) gives the thermostatic 
entropy: 

1 
ds =-g (au + xi ax3 (51) 
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Comparing Eq. (23) with Eq. (51) shows that a transition from one surface 
s = constant to another such surface cannot be achieved by means of a 
reversible, adiabatic process. For  such a transition, the limit of Eq. (21) is 
not applicable. Therefore, that transition is either irreversible or non- 
adiabatic or both. 

We substitute Eq. (51) into Eq. (31) in order to eliminate dxi and 
obtain 

dtp =_~_72 dO + ds du 
0 

or, equivalently, 

Hence, 

U 
O = s - -  (53) 

O 

and from Eq. (29), it follows that 

s = O + o - -  (54) 
dO 

Furthermore, from Eq. (51), we have 

x, (55) 

Each thermostatic system is defined by its characteristic function 0; from 
the latter, the functions u and s can be calculated. From these, the curves 
s=s(u) are obtained; their slope is Os/~u= 1/0, which might be either 
positive or negative, depending on whether the internal energy has an 
upper bound or not. That determines the sign of O. 

11. THE TRANSITION TO N O N E Q U I L I B R I U M  
THERMODYNAMICS 

We now examine the irreversible system where heat flow and viscous 
dissipation are present. In that case, we have to employ the complete trans- 
port Eqs. (7) and (8). While in the reversible case, both sides of the curve 
in Fig. 1 are inaccessible for the Pfaffian Eq. (19), they have now become 
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accessible. Therefore, a new search for the inaccessible states is required, in 
order to ensure the existence of an integrating factor for the differential 
Eq. (19). 

We have to expect that the combination of Eqs. (6), (7), and (8) will 
make the internal energy a function of all independent variables, which 
includes the gradients: 

u = z/(O, xi, grad O, Grad W) (56) 

In that case, the members of the energy balance equation become, from 
Eq. (21), 

~u c~u ~u 0u 
d u = - ~ d O + - ~ x  d X i + ~ . d ( V O ) + ~ : d ( V W  ) (57) 

with the following contributions from Eqs. (9), (10), and (7), respectively: 

dc~ = - Xi dxi (58) 

dq~ = 1 _  (13: Grad W) dt (59) 
P 

dq = dO + x__ (div grad O) dt (60) 
P 

Since () in Eq. (7) is a constant heat supply, we have dO = 0. Substituting 
in Eq. (57) gives the energy balance for a viscous, irreversible process with 
heat conduction: 

( [  ,vo,  ,vw,1 Ou dO ~u _ Xi = - 
~ V-O c3 ~dr : d t J 

II  
+ _x div(VO) - 22: VW (61) 

P P 

For fixed gradients, Eq. (61) reduces to Eq. (23), which is the energy 
balance in the absence of inaccessible states. Thus, the right-hand side of 
Eq. (61) provides the condition of inaccessibility for media with tem- 
perature gradients and velocity gradients. This condition can be written as 

[ ~3u d(VO) Ou d ( _ ~ W ! ] + p d i v ( V O ) _ I I : v w =  0 (62) 
c~ V--O d ~  + 0VW: p 

Since the gradients of temperature and velocity are independent of each 
other, Eq. (62) can be satisfied only when each gradient is constant, i.e., 
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when Eq. (62) is of the trivial form 0 = 0. This means that the gradients are 
actually parasitic variables which do not enter the system of ther- 
modynamic functions. For that reason, they are already incorporated into 
the "enthalpy" function [-3 ]. 

This is as far as we can get with Carath6odory's approach. In order to 
proceed further, an independent constitutive equation for H has to be 
added to complete the system. 
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